Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular mechanisms for tumour resistance to chemotherapy

Identifieur interne : 000E03 ( Main/Exploration ); précédent : 000E02; suivant : 000E04

Molecular mechanisms for tumour resistance to chemotherapy

Auteurs : Shu-Ting Pan [République populaire de Chine, États-Unis] ; Zhi-Ling Li [République populaire de Chine] ; Zhi-Xu He [République populaire de Chine] ; Jia-Xuan Qiu [République populaire de Chine] ; Shu-Feng Zhou [États-Unis]

Source :

RBID : ISTEX:8EA456782EEDEAFC6466AC8032BBC4ABFC9757E4

Abstract

Chemotherapy is one of the prevailing methods used to treat malignant tumours, but the outcome and prognosis of tumour patients are not optimistic. Cancer cells gradually generate resistance to almost all chemotherapeutic drugs via a variety of distinct mechanisms and pathways. Chemotherapeutic resistance, either intrinsic or acquired, is caused and sustained by reduced drug accumulation and increased drug export, alterations in drug targets and signalling transduction molecules, increased repair of drug‐induced DNA damage, and evasion of apoptosis. In order to better understand the mechanisms of chemoresistance, this review highlights our current knowledge of the role of altered drug metabolism and transport and deregulation of apoptosis and autophagy in the development of tumour chemoresistance. Reduced intracellular activation of prodrugs (e.g. thiotepa and tegafur) or enhanced drug inactivation by Phase I and II enzymes contributes to the development of chemoresistance. Both primary and acquired resistance can be caused by alterations in the transport of anticancer drugs which is mediated by a variety of drug transporters such as P‐glycoprotein (P‐gp), multidrug resistance associated proteins, and breast cancer resistance protein. Presently there is a line of evidence indicating that deregulation of programmed cell death including apoptosis and autophagy is also an important mechanism for tumour resistance to anticancer drugs. Reversal of chemoresistance is likely via pharmacological and biological approaches. Further studies are warranted to grasp the full picture of how each type of cancer cells develop resistance to anticancer drugs and to identify novel strategies to overcome it.

Url:
DOI: 10.1111/1440-1681.12581


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular mechanisms for tumour resistance to chemotherapy</title>
<author>
<name sortKey="Pan, Shu Ing" sort="Pan, Shu Ing" uniqKey="Pan S" first="Shu-Ting" last="Pan">Shu-Ting Pan</name>
</author>
<author>
<name sortKey="Li, Zhi Ing" sort="Li, Zhi Ing" uniqKey="Li Z" first="Zhi-Ling" last="Li">Zhi-Ling Li</name>
</author>
<author>
<name sortKey="He, Zhi U" sort="He, Zhi U" uniqKey="He Z" first="Zhi-Xu" last="He">Zhi-Xu He</name>
</author>
<author>
<name sortKey="Qiu, Jia Uan" sort="Qiu, Jia Uan" uniqKey="Qiu J" first="Jia-Xuan" last="Qiu">Jia-Xuan Qiu</name>
</author>
<author>
<name sortKey="Zhou, Shu Eng" sort="Zhou, Shu Eng" uniqKey="Zhou S" first="Shu-Feng" last="Zhou">Shu-Feng Zhou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8EA456782EEDEAFC6466AC8032BBC4ABFC9757E4</idno>
<date when="2016" year="2016">2016</date>
<idno type="doi">10.1111/1440-1681.12581</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-MHDT3893-R/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002B17</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002B17</idno>
<idno type="wicri:Area/Istex/Curation">002B17</idno>
<idno type="wicri:Area/Istex/Checkpoint">000022</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000022</idno>
<idno type="wicri:doubleKey">0305-1870:2016:Pan S:molecular:mechanisms:for</idno>
<idno type="wicri:Area/Main/Merge">000E04</idno>
<idno type="wicri:Area/Main/Curation">000E03</idno>
<idno type="wicri:Area/Main/Exploration">000E03</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Molecular mechanisms for tumour resistance to chemotherapy</title>
<author>
<name sortKey="Pan, Shu Ing" sort="Pan, Shu Ing" uniqKey="Pan S" first="Shu-Ting" last="Pan">Shu-Ting Pan</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi</wicri:regionArea>
<wicri:noRegion>Jiangxi</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, FL, Tampa</wicri:regionArea>
<orgName type="university">Université de Floride du Sud</orgName>
<placeName>
<settlement type="city">Tampa</settlement>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Zhi Ing" sort="Li, Zhi Ing" uniqKey="Li Z" first="Zhi-Ling" last="Li">Zhi-Ling Li</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Zhi U" sort="He, Zhi U" uniqKey="He Z" first="Zhi-Xu" last="He">Zhi-Xu He</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Centre & Sino‐US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guizhou, Guiyang</wicri:regionArea>
<wicri:noRegion>Guiyang</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Jia Uan" sort="Qiu, Jia Uan" uniqKey="Qiu J" first="Jia-Xuan" last="Qiu">Jia-Xuan Qiu</name>
<affiliation wicri:level="3">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi, Nanchang</wicri:regionArea>
<placeName>
<settlement type="city">Nanchang</settlement>
<region type="province">Jiangxi</region>
</placeName>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Shu Eng" sort="Zhou, Shu Eng" uniqKey="Zhou S" first="Shu-Feng" last="Zhou">Shu-Feng Zhou</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, FL, Tampa</wicri:regionArea>
<orgName type="university">Université de Floride du Sud</orgName>
<placeName>
<settlement type="city">Tampa</settlement>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Clinical and Experimental Pharmacology and Physiology</title>
<title level="j" type="alt">CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY</title>
<idno type="ISSN">0305-1870</idno>
<idno type="eISSN">1440-1681</idno>
<imprint>
<biblScope unit="vol">43</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="723">723</biblScope>
<biblScope unit="page" to="737">737</biblScope>
<biblScope unit="page-count">15</biblScope>
<date type="published" when="2016-08">2016-08</date>
</imprint>
<idno type="ISSN">0305-1870</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0305-1870</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Chemotherapy is one of the prevailing methods used to treat malignant tumours, but the outcome and prognosis of tumour patients are not optimistic. Cancer cells gradually generate resistance to almost all chemotherapeutic drugs via a variety of distinct mechanisms and pathways. Chemotherapeutic resistance, either intrinsic or acquired, is caused and sustained by reduced drug accumulation and increased drug export, alterations in drug targets and signalling transduction molecules, increased repair of drug‐induced DNA damage, and evasion of apoptosis. In order to better understand the mechanisms of chemoresistance, this review highlights our current knowledge of the role of altered drug metabolism and transport and deregulation of apoptosis and autophagy in the development of tumour chemoresistance. Reduced intracellular activation of prodrugs (e.g. thiotepa and tegafur) or enhanced drug inactivation by Phase I and II enzymes contributes to the development of chemoresistance. Both primary and acquired resistance can be caused by alterations in the transport of anticancer drugs which is mediated by a variety of drug transporters such as P‐glycoprotein (P‐gp), multidrug resistance associated proteins, and breast cancer resistance protein. Presently there is a line of evidence indicating that deregulation of programmed cell death including apoptosis and autophagy is also an important mechanism for tumour resistance to anticancer drugs. Reversal of chemoresistance is likely via pharmacological and biological approaches. Further studies are warranted to grasp the full picture of how each type of cancer cells develop resistance to anticancer drugs and to identify novel strategies to overcome it.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
<li>Jiangxi</li>
</region>
<settlement>
<li>Nanchang</li>
<li>Tampa</li>
</settlement>
<orgName>
<li>Université de Floride du Sud</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Pan, Shu Ing" sort="Pan, Shu Ing" uniqKey="Pan S" first="Shu-Ting" last="Pan">Shu-Ting Pan</name>
</noRegion>
<name sortKey="He, Zhi U" sort="He, Zhi U" uniqKey="He Z" first="Zhi-Xu" last="He">Zhi-Xu He</name>
<name sortKey="He, Zhi U" sort="He, Zhi U" uniqKey="He Z" first="Zhi-Xu" last="He">Zhi-Xu He</name>
<name sortKey="Li, Zhi Ing" sort="Li, Zhi Ing" uniqKey="Li Z" first="Zhi-Ling" last="Li">Zhi-Ling Li</name>
<name sortKey="Qiu, Jia Uan" sort="Qiu, Jia Uan" uniqKey="Qiu J" first="Jia-Xuan" last="Qiu">Jia-Xuan Qiu</name>
<name sortKey="Qiu, Jia Uan" sort="Qiu, Jia Uan" uniqKey="Qiu J" first="Jia-Xuan" last="Qiu">Jia-Xuan Qiu</name>
</country>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Pan, Shu Ing" sort="Pan, Shu Ing" uniqKey="Pan S" first="Shu-Ting" last="Pan">Shu-Ting Pan</name>
</region>
<name sortKey="Zhou, Shu Eng" sort="Zhou, Shu Eng" uniqKey="Zhou S" first="Shu-Feng" last="Zhou">Shu-Feng Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:8EA456782EEDEAFC6466AC8032BBC4ABFC9757E4
   |texte=   Molecular mechanisms for tumour resistance to chemotherapy
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021